俄罗斯VS沙特直播

相反,LZ4(高压缩比)要慢于级别1到4的deflate,而输出文件的大小即便和级别1的deflate相比也要大上不少。也就是说,计算机所产生的随机数,实际上是有某种规律或者模式的“伪随机数”(Pseudorandomnumber)。花博园主园区由“花园南昌、水墨梅湖、秀美江西、百花迎宾、硕果飘香”五大功能板块构成,为突出滨湖特色,花博园按照“缤纷的浪漫主题、探幽的童趣主题、休闲的运动主题、商务的时尚主题”四大主题总体规划布局。一旦被抓那应该怎么办呢?工作人员回答,那就花几十元钱把车子领回来。相反,LZ4(高压缩比)要慢于级别1到4的deflate,而输出文件的大小即便和级别1的deflate相比也要大上不少。
返回首页

Spark DataFrame小试牛刀

时间:2015-03-23 19:46来源:知行网www.youyuan-chem.com 编辑:麦田守望者

三月中旬,Spark发布了最新的1.3.0版本,其中最重要的变化,便是DataFrame这个API的推出。DataFrame让Spark具备了处理大规模结构化数据的能力,在比原有的RDD转化方式易用的前提下,计算性能更还快了两倍。这一个小小的API,隐含着Spark希望大一统「大数据江湖」的野心和决心。DataFrame像是一条联结所有主流数据源并自动转化为可并行处理格式的水渠,通过它Spark能取悦大数据生态链上的所有玩家,无论是善用R的数据科学家,惯用SQL的商业分析师,还是在意效率和实时性的统计工程师。

以一个常见的场景 — 日志解析为例,有时我们需要用到一些额外的结构化数据(比如做IP和地址的映射),通常这样的数据会存在MySQL,而访问的方式有两种:一是每个worker远程去检索数据库,弊端是耗费额外的网络I/O资源;二是使用JdbcRDD的API转化为RDD格式,然后编写繁复的函数去实现检索,显然要写更多的代码。而现在,Spark提供了一种新的选择,一行代码就能实现从MySQL到DataFrame的转化,并且支持SQL查询。

实例

首先我们在本地放置了一个JSON文件,文件内容如下:

{"name":"Michael"}
{"name":"Andy", "age":30}
{"name":"Justin", "age":19}

 

然后我们进入spark-shell,控制台的提示说明Spark为我们创建了一个叫sqlContext的上下文,注意,它是DataFrame的起点。
接下来我们希望把本地的JSON文件转化为DataFrame

scala> val df = sqlContext.jsonFile("/path/to/your/jsonfile")
df: org.apache.spark.sql.DataFrame = [age: bigint, name: string]


从控制台的提示可以得知,我们成功创建了一个DataFrame的对象,包含agename两个字段。
DataFrame自带的玩法就多了:

// 输出表结构
df.printSchema()

// 选择所有年龄大于21岁的人,只保留name字段
df.filter(df("age") > 21).select("name").show()

// 选择name,并把age字段自增
df.select("name", df("age") + 1).show()

// 按年龄分组计数
df.groupBy("age").count().show()

// 左联表(注意是3个等号!)
df.join(df2, df("name") === df2("name"), "left").show()

 

此外,我们也可以把DataFrame对象转化为一个虚拟的表,然后用SQL语句查询,比如下面的命令就等同于df.groupBy("age").count().show()

df.registerTempTable("people")
sqlContext.sql("select age, count(*) from people group by age").show()

 

当然,Python有同样丰富的API(由于最终都是转化为JVM bytecode执行,Python和Scala的效率是一样的),而且Python还提供了类Pandas的操作语法。关于Python的API,可以参考Spark新年福音:一个用于大规模数据科学的API——DataFrame。

MySQL

除了JSON之外,DataFrame现在已经能支持MySQL、Hive、HDFS、PostgreSQL等外部数据源,而对关系数据库的读取,是通过jdbc实现的。

对于不同的关系数据库,必须在SPARK_CLASSPATH变量中加入对应connector的jar包,比如希望连接MySQL的话应该这么启动spark-shell

SPARK_CLASSPATH=mysql-connector-java-x.x.x-bin.jar spark-shell

 

下面要将一个MySQL表转化为DataFrame对象:

val jdbcDF = sqlContext.load("jdbc", Map("url" -> "jdbc:mysql://localhost:3306/your_table?user=your_user&password=your_password", "dbtable" -> "video"))

 

然后十八般武艺又可以派上用场了。

Hive

Spark提供了一个HiveContext的上下文,其实是SQLContext的一个子类,但从作用上来说,sqlContext也支持Hive数据源。只要在部署Spark的时候加入Hive选项,并把已有的hive-site.xml文件挪到$SPARK_HOME/conf路径下,我们就可以直接用Spark查询包含已有元数据的Hive表了:

sqlContext.sql("select count(*) from hive_people").show()

 

结语

Spark的目标在于成为一个跨环境、跨语言、跨工具的大数据处理和分析平台。DataFrame的推出很好诠释了这一目标,从初步的使用来看确实很容易上手。随着性能和稳定性的持续优化,我相信某一天所有玩数据的人,都可以使用Spark作为惟一的平台入口。

顶一下
(0)
0%
踩一下
(0)
0%
标签(Tag):Spark DataFrame
------分隔线----------------------------
------分隔线----------------------------
发表评论
请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。
评价:
表情:
验证码:点击我更换图片